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ABSTRACT -

A design tool is presented for predicting the effect of material heterogeneity on the performance of
curved composite beams for use in aircraft fuselage structures. Material heterogeneity can be induced
during processes such as sheet forming and stretch forming of thermoplastic composites. This
heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing
process causing a gradient in material properties in both the radial and tangential directions. The analysis

ure uses a separate two-dimensional elasticity solution for the stresses in the flanges and web
sections of the beam. The separate solutions are coupled by requiring that forces and displacements match
at the section boundaries. Analysis is performed for curved beams loaded in pure bending and uniform
pressure. The beams can be of any general cross-section such as a hat, T-, I-, or J-beam. Preliminary
results show that the geometry of the beam dictates the effect of heterogeneity on performance.
Heterogeneity plays a much larger role in beams with a small average radius to depth ratio, R/t, where R is
the average radius of the beam and t is the difference between the inside and outside radius. Results of the
analysis are in the form of stresses and displacements, and they are compared to both mechanics of
materials and numerical solutions obtained using finite element analysis.

INTRODUCTION

The use of composite materials in commercial aircraft has been focused on secondary structures
such as control surfaces and trailing edge panels. Breakthroughs in manufacturing techniques, materials,
and structural concepts are needed so that more primary structures can be produced from composites
resulting in structural weight savings, part count reduction, and cost reduction. This research investigates
the possibilities of combining a new material system of long discontinuous fibers in a thermoplastic matrix
with fabrication techniques such as sheet forming and stretch forming to produce curved beams for use as
primary structures in commercial aircraft.

Manufacturing processes such as sheet forming and stretch forming can be used to produce several
types of composite parts [1, 2]. The use of a long discontinuous fiber material system allows for material
stretching over complex curvature parts while maintaining a high percentage of the continuous fiber
material properties [3]. Combination of these forming methods and material system allows the production
of complex structures such as curved beams as shown in Figure 1. The microstructure of a curved beam is
sensitive to the tproduction method and gradients in material properties are expected in both sheet formed
[4] and stretch formed [2] beams. Schematic examples of two types of heterogeneity are shown in Figure
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The second analysis technique uses a Rayleigh-Ritz ;ppmach to solve the minimum potential
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ANALYSIS PROCEDURES

Radial Heterogeneity Analysis

The state of stress and strain is determined for a curved beam loaded in pure bendmgwhwhhas any
of the following cross-sections; I-bcam, T-beam, J-beam, etc. The solution is found by separating the
beam into three sections; each with an applied bending moment and distributed load. A stress potential
?pproach is used to solve the two-dimensional problem in each section. The constitutive relations take the
orm

g=o5rhoy; iL,j=1,2 (1)

where € is the two-dimensional strain vector in polar coordinates, ¢ is the corresponding stress vector, r is
the radial position, and oj are the base values of the elements of the compliance matrix;

ajp =a%Eyn , anz=02;=-vi2a%Ey2 , axp=a"k2, @

and a is the inside radius of the beam. 1’hcdegreeofrad1alhctero geneity, n, allows for a property gradient
in the radial direction of the beam. A positive 'n’ defines a beam which 1s stiffer with increasing radius, a
negative 'n’ defines a beam which is more compliant with increasing radius and homo: material

m&d are specified by letting n = 0. Base values for the material properties are de along the inside
of the beam. This constitutive relation, together with equilibrium and compatibility can be combined
to form the equation

V‘¢=O _ (3)
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where ¢ is the stress potential. We can solve for ¢ by applying boundary conditions to the two-
dimensional curved beam as shown in Figure 3; the tractions along the straight edges are xesprescnted bya
bending moment, M, and the curved surfaces are traction free. The resulting stresses are [5]:

M [ct- ca+l ch+l _ 8
o= g | or - ot P+ TGt o+ 0],
1 1 @
ct - o+ ch+l _ o8
%= g | aioet 8 P+ T okt + ety oo

where,

ct-cn+1) (1 - ¢s+l ch+l _ o8 (1 - ct+l t +1
( - )-(ct ) szl +( - )-(ct ) m+§_il(g+ )(1 . cn+2) , )

(D) =3(atVazvam) . vn-&%‘?&, ©

and h is the beam thickness, c is the ratio of the inside radius to the outside radius (c = a/b), and p is the

ratio of radial position to outside radius (p = r/b). Notice that the solution is axisymmetric and 69 =0
everywhere.

Another loading condition that produces an axisymmetric state of stress in a curved beam is the _
classic Lame’s problem, which is a circular cylinder with an internal and external pressure. The stresses in
such a cylinder are [5):

pl-l - pt-l ct Pl-l -c8 pt-l
G‘S-Pc cl-ct +Q c-cl

@
s ps-l -t pt-l s ct Ps-l -tcS Pt-l
c8 - ¢t +Q cS .t

cg=-Pc

where P is the internal pressure, Q is the external pressure, and all the other variables are the same as in the
pure bending case. When looking at a section of the cylinder, as shown in Figure 4, the straight edges are
not traction free; the tractions can be represented by an end moment and an end load analogous to hoop
stress found in a thin walled cylinder. end load, L, is determined by integrating the tangential stress
across the depth of the beam and the end moment, My, is found by integrating the tangential stress times
the radius across the depth of the beam,

The displacements for both of these loading conditions are found using a two step procedure. The
first step finds the radial and tangential strains by substituting equations (4) and (7) into equation (1). Then
the expressions for the displacements can be found by applying the strain displacement relations [5].

Superposition of Two-Dimensional Solutions

Now that the solution for the stresses has been established in each individual section under the
general loading shown in Figure 5, superposition is used to find the solution of the entire beam. The
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curved I-beam, for example, loaded with a bending moment, M, is separated into three sections with the
following bending moments and distributed loads: M, M2, M3, P2, P3, Qi, and Q, as shown in Figure
5. Applying superposition; the sum of the moments on the ends must be equal to M:

Mi+M2+M3+Mp1+Mi2+M13=M (8)

where M;, M3, and M3 are applied bending moments and M1, Mp 2, and M3 are the bending moments
due to the applied distributed loads Q;, Pz and Q, and P3 , respectively.

Six more equations are necessary to solve this problem. The sections must be in equilibrium where
they meet, therefore the radial loads must be equal resulting in the following relations:

Pohp=Qh; and Pih3= Qhy 9

where hj, hy, and h3 are the thickness of each section and the P’s and Q’s are the applied pressures. The
final equations are found by requiring the continuity of the displacements at the section boundaries. The
radial and tangential displacements of section 1 must be equal to the corresponding displacements of section
2 at the section boundary where r = b. Similar conditions hold at the other section boundary where r =c.

ur(l)= @, atr=b “r(2)=“r(3) , atr=¢
uo(l) = uo(z) , atr=b ue(z) = u9(3) , atr=c. (10)

Equation (8) which is the superposition equation, equations (9) which are the two equilibrium equations,
and equations (10) which are the four cenﬁnui%equaﬁons are solved simultaneously for the seven
unknowns; M, M3, M3, P3, P3, Q), and Q2. The stresses, strains and displacements can be found in
each section based on these loading conditions.

. Rayleigh-Ritz Structural Analysis

This method is used to solve the problem of a circular ring loaded by internal and external pressure.
It makes use of an assumed displacement field which can also be used to solve several other problems [6].
This method allows for the calculation of stresses in components without the need for elaborate pre- and
mt—processing; which is especially convenient for parts with complex heterogeneous material properties
geometry.

The principle of minimum potential energy states that of all displacement fields which satisfy the

prescribed constraint conditions, the correct state is that which makes the total potential energy, IT, of the

structure a minimum [7]. The ntial energy of the structure is the sum of the elastic strain energy, U,
and the potential of the external forces, V. The minimum potential energy is found by setting its first

variation equal to zero, 8 II1=8U + 8 V =0; which can be expanded to

[8(e)T(N} dA- [8{u)T{t} ds =0. (11)
A $

strain vector

stress resultant vector
displacement vector

applied surface traction vector

E
nnuon

and A is the area of the circular ring and S is the curve which defines its boundary. We assume the
following form of the displacement field,
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N M N M
=3 T ¢ PEMcos2i) , uy=3X T ¢ PMHsinge), (2
=0 k=l 0 k=1

where ur and uy are the displacement components and q}( are unknown parameters. This displacement field

satisfies symmetry conditions and, for the case of an isotropic circular ring loaded by internal and external
pressure, it converges to the exact solution with very few terms of the series; j=0 and k=2. Substituting
this equation into the principle of minimum potential energy, equation (11), leads to a system of M(2N+1)

linear equations which are solved simultaneously for the unknown parameters, q}( . A detailed description
of the solution procedure is presented by Russell [6].

RESULTS

The superposition model, which is used to find stresses and displacements in a curved beam loaded
in pure bending, has been verified by com}m-ing results with mechanics of materials and finite element
analysis solutions. Several example problems of isotropic beams having I-, T-, or rectangular cross-
sections have been examined and the difference between the superposition and mechanics of materials
solutions is less than 1% for all cases. Two-dimensional finite element analysis is used to compare results
for a curved heterogeneous anisotropic J-beam. The heterogeneity is introduced into the finite element
analysis by varying the material properties in each element of the model. Table 1 compares the
superposition results with those found using finite element analg'sis for a beam with the following
dimensions: inside radius is 37.4 inches, the outside radius is 39.9 inches, the lower flange is 0.49 inches
wide, the upper flange is 0.89 inches wide and the web and flanges are 0.06 inches thick. The flanges are
incorporated into the finite element model by setting the thickness of the inside and outside row of elements
accordingly. Three different constitutive relations are examined; the degree of radial heterogeneity, n, is set
equal to -2, 0, and +2, where an 'n' value of -2 corresponds to a beam which is approximately 20% stiffer
on the inside radius, an 'n' value of +2 is roughly equivalent to a beam which is 20% stiffer on the outside
radius, and an 'n’' value of zero means the beam is homogeneous. The finite element analysis results are
within 3.4% of the superposition results as shown in Table 1.

The validity of the model has been demonstrated and the effect of radial heterogeneity on beam
performance can now be determined. The maximum tangential stress and maximum displacement versus
heterogeneity are found for a curved J-beam loaded in pure Bending. These maximum values are plotted
for several different beam geometries in Figure 6. The degree of heterogeneity is varied from -2 to +2
corresponding to approximately a 20% decrease or 20% increase in stiffness, respectively. The effect of
material heterogeneity is highly dependent on the beam georhetry which is characterized by the average
radius to depth ratio, R/t; where R = (rj + ro)/2 and t=rg - 1j. Heterogeneity has a considerable effect on
the maximum tangential stress in beams with a small curvature, R/t = 1, while it has virtually no effect on
the stresses in beams with a large curvature. The maximum displacement is effected by heterogeneity for
all beam geometries considered, but, the effect is again seen more drastically in beams with small
curvature,

This analysis procedure can be used as a simple tool for preliminary design of curved beams.
Given the basic beam dimensions, i.e., inner and outer radii, a range of values for all other dimensions can
.be selected. Flange widths and thicknesses can be varied independently as well as the material properties
- and degree of heterogeneity in each section. The results of a sample preliminary design are presented in
Table 2. Two types of beams are analyzed; a J-beam with an-R/t ratio of 14.5 and a channel beam with an
R/t ratio of 6.7. The table shows the change in maximum and minimum tangential stress as well as the
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maximum deflection for a range of several variables. These variables are the deﬁc of radial heterogeneity
which is varied from -2 to +2 for isotropic and unidirectional bedms, the inner flange thickness, h1, which
is varied from 0.09 to 0.89 inches, and the web thickness, h2, which is varied from 0.04 to 0.1 inches.

Table 1:  Comparison of Superposition and Finite Element Analysis Results
for a Heterogeneous, Anisotropic J-Beam Loaded in Pure Bending

Solution Degree of Maximum Maximum Minimum
Procedure Heterogeneity | Displacement. Stress Stress
o s (os) ul
FEA 2 7.08 E-5 5.1 -3.50
Superposition 2 7.21E-5 5.17 -3.54
% Difference --- 1.8 % 0.6 % 1.1 %
FEA 0 6.53 E-5 5.01 -3.57
Superposition 0 6.76 E-5 5.04 -3.63
% Difference 3.4 % 0.6 % 1.7 %
_FEA 2 6.23E-5 4,89 -3.67
Superposition 2 | 634E5 4,91 -3.71
% Difference 17 % 04 % 1.1%

Table 2: Design Study Results

Variable | % ChangeIn
Parameter | Max. Stress
N=-20042 1 6.1

n=-2to+ § 6.7 6. .
h2 = .04 to 0.1 33.9 26.7 — 31.1
: n=-2to+ D. 4. ' 8.4
C-Beam % rop: n=-2t0+ 16.3 12.0 "28.2
C-Beam ni- onal | hl =.13 t0.45 | 260.2 10.1 18.7
C-Beam Tsotropic hl=.13t0.43]  26.1 10.2 10.6

The Rayleigh-Ritz technique is used to solve the problem of a curved beam loaded by internal and
external 5‘pressure:. Solutions are com with exact results for isotropic and axis tric anisotropic
beams [5], and the difference is within 0.1%. This solution technique is also verified by solving the
problem of an infinite plate with a centrally located hole loaded only by an internal pressure where the
principal material directions are along the cartesian axes. This problem is modeled by letting rj = 1 inch, 1,
=30 inches, Pj = 1 psi, and Py = 0 psi. The stress concentrations found at ® = 0° and 90° are within 1% of
those found by Lekhnitskii [5]. A carbon reinforced thermoplastic composite ring with an inner radius of 6
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inches and an outer radius of 8 inches is analyzed for two different fiber arrangements; one with
tangentially oriented fibers and the second with fibers aligned in the x:direction. The stress distribution is
axisymmetric in the ring with tangentially oriented fibers as shown in Figure 7a while the ring with straight
fibers in the x-direction has a slight stress concentration at approximately 0 = 45° as shown in Figure 7b.
These results are evidence that the tangential heterogeneity due to non-axisymmetric fiber distribution can
affect the stresses in a curved beam loaded by internal and external pressure.

DISCUSSION

A closed form elasticity solution can be used to solve for the stresses and displacements in a
heterogeneous aﬁsoﬁic curved beam loaded in pure bending. The elasticity analysis, based on the
superposition of several two-dimensional solutions, provides results which are in very good agreement
with those found from mechanics of materials and finite element analysis. The heterogeneity is introduced
into the mode! by defining the material properties as an exponential function of the radius, while the actual
heterogeneity due to fiber realignment during forming can be determined using enhanced ultrasonic C-
scanning techniques.

The effect of radial heterogeneity on curved beams loaded in pure bending depends on the geometry
of the beam. The maximum stress and deflection in beams with a small average radius to depth ratio is
significantly affected by heterogeneous material properties. A beam whose stiffness decreases by 20%
from the inside to outside radius (i.e., n = -2), shows a 28% increase in the maximum tangential stress and
a 75% increase in the maximum deflection when dtoah neous beam if R/t =2, butonly a
1% and 4% increase, respectively, if R/ = 10. It is unlikely that radlgf heterogeneity affects the
performance of most beams used in transport aircraft fuselage applications since they have an R/t > 10; but
this heterogeneity could play a part in the performance of beams used in other applications.

The superposition elasticity analysis has been incorporated into a computer which can be
used for design studies of curved beams. Several of the beam parameters can be varied to determine their
overall effect on maximum tensile and compressive stresses, a8 well as maximum deflections. The variable
parameters are the thickness and of the flange and web along with their material properties and degree

of radial heterogeneity. This a quick easy way to perform initial beam sizing calculations.
The Rayleigh-Ritz analysis can be used to g6 ams with both radial and tangential

heterogeneity. The i of this ability is demnonstrated by the results of the pressurized ring

problem. Isotropic and axisymmetric anisotropic Ve 30 axisymmetric state of stress when

pressurized. Rings with tangential heterogeneity, however,
when pressurized. Stress concentrations develop whic

the heterogeneity. This type of analysis is c
curved beams subject to several different loading coind bending, internal and external pressure,
and end loading. Geometric heterogeneity, such as a noteh of cit-out, is also under investigation. Future
work includes applying an appropriate failure criterion 85 Bsults of these analyses and comparisons
with experimental data, o '

pot have an axisymmetric state of stress

function of both the material properties and
o study the effect of heterogeneity on
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Figure 1: Thermoplastic Composite Curved Beam
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